Discrete dipole approximation codes
This article contains list of discrete dipole approximation codes and their applications.
The discrete dipole approximation (DDA) is a flexible technique for computing scattering and absorption by targets of arbitrary geometry. Given a target of arbitrary geometry, one seeks to calculate its scattering and absorption properties. The DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to the local electric field. The dipoles of course interact with one another via their electric fields, so the DDA is also sometimes referred to as the coupled dipole approximation. It is closely related to method of moments, digitized Green's function, volume integral method.
Classification
The compilation contains information about the discrete dipole approximation, relevant links, and their applications. There are reviews [1] [2] as well as published comparison of existing codes. [3]
General purpose public domain DDA codes
Year |
Name |
Authors |
References |
Language |
Short Description |
1993 |
DDSCAT [4][5] |
B. T. Draine and P.J. Flatau |
[1]
[6]
|
Fortran |
Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry and periodic particles. |
2006 |
ADDA [7] |
Maxim A. Yurkin and Alfons G. Hoekstra |
[8] |
C |
Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry. |
2009 |
OpenDDA [9] |
James Mc Donald |
[10]
[11]
|
C |
Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry. |
Specialized DDA codes
Year |
Name |
Authors |
References |
Language |
Short Description |
2002 |
|
D. W. Mackowski |
[12] |
Fortran |
Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry and calculates analytically orientationally averaged scattering properties. |
2006 |
CDA |
Matthew David McMahon |
[13] |
Matlab |
Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry. |
Relevant scattering codes
See also
References
- ^ a b B. T. Draine and P. J. Flatau (1994). "Discrete dipole approximation for scattering calculations". J. Opt. Soc. Am. A 11 (4): 1491–1499. Bibcode 1994JOSAA..11.1491D. doi:10.1364/JOSAA.11.001491.
- ^ M. A. Yurkin and A. G. Hoekstra (2007). "The discrete dipole approximation: an overview and recent developments". J. Quant. Spectrosc. Radiat. Transfer 106 (1-3): 558–589. Bibcode 2007JQSRT.106..558Y. doi:10.1016/j.jqsrt.2007.01.034. http://sites.google.com/site/yurkin/publications/papers/YurkinandHoekstra-2007-Thediscretedipoleapproximation%2Canoverviewandrecentdevelopments.pdf.
- ^ A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov (2007). "Comparison between discrete dipole implementations and exact techniques". J. Quant. Spectrosc. Radiat. Transfer 106 (1-3): 417–436. Bibcode 2007JQSRT.106..417P. doi:10.1016/j.jqsrt.2007.01.026. http://sites.google.com/site/yurkin/publications/papers/Penttilaetal-2007-Comparisonbetweendiscretedipoleimplementations.pdf.
- ^ DDSCAT B. T. Draine page
- ^ DDSCAT Google Code page
- ^ B. T. Draine and P. J. Flatau (2008). "Discrete-dipole approximation for periodic targets: theory and tests". J. Opt. Soc. Am. A. 25 (11): 2693–2703. arXiv:0809.0338. Bibcode 2008JOSAA..25.2693D. doi:10.1364/JOSAA.25.002693.
- ^ ADDA Google Code page
- ^ M. A. Yurkin, V. P. Maltsev and A. G. Hoekstra (2007). "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength". J. Quant. Spectrosc. Radiat. Transfer 106 (1-3): 546–557. Bibcode 2007JQSRT.106..546Y. doi:10.1016/j.jqsrt.2007.01.033. http://sites.google.com/site/yurkin/publications/papers/Yurkinetal-2007-Thediscretedipoleapproximationforsimulationoflightscattering.pdf.
- ^ OpenDDA home page
- ^ J. McDonald, A. Golden, and G. Jennings (2009). "OpenDDA: a novel high-performance computational framework for the discrete dipole approximation". Int. J. High Perf. Comp. Appl. 23 (1): 42–61. arXiv:0908.0863. doi:10.1177/1094342008097914.
- ^ J. McDonald (2007). "OpenDDA - a novel high-performance computational framework for the discrete dipole approximation". PhD thesis (National University of Ireland, Galway). http://www.opendda.org/assets/docs/thesis_JMcD_OpenDDA.pdf.
- ^ D. W. Mackowski (2002). "Discrete dipole moment method for calculation of the T matrix for nonspherical particles". J. Opt. Soc. Am. A 19 (5): 881–893. Bibcode 2002JOSAA..19..881M. doi:10.1364/JOSAA.19.000881.
- ^ M. D. McMahon (2006). "Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles". PhD thesis (Vanderbilt University, Nashville, Tennessee). http://etd.library.vanderbilt.edu/ETD-db/available/etd-09012006-153819/unrestricted/MatthewMcMahonDissertation.pdf.